
UCRL-CONF-202762

Applying Loop Optimizations to
Object-oriented Abstractions Through
General Classification of Array Semantics

Qing Yi, Dan Quinlan

March 8, 2004

The 17th International Workshop on Languages and Compilers
for Parallel Computing
West Lafeyette, IN, United States
September 22, 2004 through September 25, 2004

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Applying Loop Optimizations to Object-oriented
Abstractions Through General Classification of

Array Semantics

Qing Yi Dan Quinlan

Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Abstract. Optimizing compilers have a long history of applying loop
transformations to C and Fortran scientific applications. However, such
optimizations are rare in compilers for object-oriented languages such
as C++ or Java, where loops operating on user-defined types are left
unoptimized due to their unknown semantics. Our goal is to reduce the
performance penalty of using high-level object-oriented abstractions. We
propose an approach that allows the explicit communication between
programmers and compilers. We have extended the traditional Fortran
loop optimizations with an open interface. Through this interface, we
have developed techniques to automatically recognize and optimize user-
defined array abstractions. In addition, we have developed an adapted
constant-propagation algorithm to automatically propagate properties of
abstractions. We have implemented these techniques in a C++ source-
to-source translator and have applied them to optimize several kernels
written using an array-class library. Our experimental results show that
using our approach, applications using high-level abstractions can achieve
comparable, and in cases superior, performance to that achieved by effi-
cient low-level hand-written codes.

1 Introduction

As modern computers become increasingly complex, compilers must extensively
optimize user applications to achieve high performance. One important class
of such optimizations includes loop transformations, such as loop blocking and
fusion/fission, which have long been applied to Fortran scientific applications.

Most loop optimizations, however, have been applied only to loops operat-
ing on primitive types in Fortran or C. To illustrate this, consider Figure 1, a
C++ fragment that uses a high-level array class library. Here the user-defined
types, floatArray and Range, have similar semantics to the Fortran90 array
and subscript triplet respectively.

If Figure 1 were written in Fortran90 using the primitive array types, most
Fortran compilers would be able to translate the array operations into explicit
loop computations and then apply loop optimizations. However, as the same
computation is written in C++ using abstractions, a C++ compiler will likely
consider all the array operations as opaque function calls, and apply no opti-
mizations.

void interpolate1D (floatArray& fineGrid, floatArray& coarseGrid) {
int fineGridSize = fineGrid.getLength(0), coarseGridSize = coarseGrid.getLength(0);
Range If (2,fineGridSize-2,2), Ic (1,coarseGridSize-1,1);
fineGrid(If) = coarseGrid(Ic);
fineGrid(If-1) = (coarseGrid(Ic-1) + coarseGrid(Ic)) / 2.0;

}

Fig. 1. Example: 1D interpolation

To avoid this performance penalty for using object-oriented abstractions,
programmers are often forced to write low level code and unnecessarily expose
many implementation details. This practice discourages code reuse and thus
leaves good programming styles in conflict with high performance. The problem
is especially acute in scientific applications where performance is critical.

We propose an approach which encourages programmers write high-level
object-oriented programs by allowing them to explicitly communicate with the
compiler. Our work does not apply to just-in-time compilation techniques, but
can apply to Java in a source-to-source manner similar to the way which we
apply it to C++. Specifically, we present the following new results.

– We have designed an annotation language specifically for classifying the se-
mantics of user-defined types and operators.

– We have developed a new algorithm, adapted from the traditional constant-
propagation algorithm, to propagate semantic properties of object-oriented
abstractions. The extracted properties are then used to drive the optimiza-
tion of user-defined abstractions.

– Based on our annotation interface, we have applied loop optimizations di-
rectly to general user-defined array operations. In contrast, traditional loop
optimizations only addressed loops operating on primitive language con-
structs, and not on user-defined abstractions.

– We have implemented the above techniques in a C++ source-to-source trans-
lator and have applied them to optimize several kernels written using an
array-abstraction library. These results were not possible using traditional
techniques for Fortran applications. Our results show that using our ap-
proach, applications using high-level abstractions can achieve comparable or
even better performance than that achieved by lower-level codes.

Although we promote communication between programmers and compilers,
we do not exclude automating the process. Our future work includes at least
partially automating the generation of annotations. Section 2 describes our ex-
tended loop optimization algorithm. Section 3 and 4 then present our annotation
language and overall optimization framework respectively. Finally, Section 5, 6
and 7 present our experimental results, discuss related work, and draw conclu-
sions.

2 Extended Loop Transformation

Figure 2 summarizes our extended loop transformation algorithm, which imple-
ments three loop optimizations: interchange, fusion and blocking. The algorithm

2

loop-transformation(C, A)
C: input code; A: array abstraction interface

Dep = construct-dependence-graph(C,A);
distribute-loop-nests(C, Dep);
for (each loop nest l ∈ C)

apply-loop-interchange(l, Dep);
apply-loop-fusion(C, Dep);
for (each loop nest l ∈ C)

apply-blocking(l, Dep)

construct-dependence-graph(C, A)
C: input code; A: array abstraction interface

for (each pair of statements s1 and s2)
(mod1,use1) = get-side-effects(A,s1);
(mod2,use2) = get-side-effects(A,s2);
if (mod1 or mod2 contains unknown side-effect)

create-dependence(s1, s2); continue;
for (each (a1, a2) ∈ {(mod1, use2) or (use1, mod2)

or (mod1, mod2) })
if (is-var(a1) and is-var(a2) and identical(a1,a2))

create-dependence(s1, s2);
else if (((arr1,sub1) = is-array-elem(A, a1))

and ((arr2, sub2) = is-array-elem(A,a2))
and identical(arr1,arr2))

compute-array-dependence(sub1, sub2);
else if (may-alias(A,a1, a2))

create-dependence(s1, s2);

is-array-elem(A, a1)
A: array abstraction interface;
a1: memory access expression;
return: array and subscripts of the access

if ((obj, subs) = A.is-access-array-elem(a1))
return (obj, subs);

else if ((pntr,subs) = is-pntr-array-access(a1))
and is-constant-pointer(pntr))

return (pntr, subs);
else return ∅

may-alias(A, a1, a2)
A: array abstraction interface;
a1,a2: memory references to be analyzed;
return : whether a1 and a2 may be aliased;

if ((arr1, sub1) = A.is-access-array-elem(a1))
return may-alias(arr1, a2);

if ((arr2, sub2) = A.is-access-array-elem(a2))
return may-alias(a1, arr2);

if (A.is-known-array(a1) and
A.is-known-array(a2))
return A.is-aliased-array(a1, a2);

if (a1 and a2 are both local variables)
return is-aliased-local-var(a1, a2);

else
return is-type-alias-compatible(a1,a2);

Fig. 2. Loop transformation algorithm

is an extension to previous work by Yi, Kennedy and Adve [22], which optimized
loops in Fortran applications. We have extended their dependence analysis algo-
rithm with an interface, array abstraction interface, to facilitate the optimization
of loops operating on user-defined array classes 1.

2.1 Dependence Analysis

In Figure 2, function construct-dependence-graph computes the reordering con-
straints between each pair of statements (s1,s2). Specifically, a transformation
is safe if it never reorders any iterations of s1 and s2 that are connected by
dependences.

In the algorithm, we first collect all the memory references modified (mod1

and mod2) or used (use1 and use2) by s1 and s2 respectively. We then create
dependence edges to connect each pair of iterations, I1(s1) (iteration I1 of state-
ment s1) and I2(s2), when both I1(s1) and I2(s2) may access a common memory
store loc, and at least one of them may modify loc.

Given two arbitrary memory references, a1 and a2, if they access memory
through an identical scalar or array variable2, we compute their reordering con-
straints using traditional dependence analysis algorithms for Fortran [1, 19, 3], as

1 The array abstraction interface is also used in the profitability analysis of applying
loop optimizations, which is omitted in this paper.

2 Here the variable could be a class variable concatenated with a list of non-pointer
field names.

3

encoded by functions create-dependence and compute-array-dependence respec-
tively. Note that function is-array-elem(A,a1) uses the array-abstraction inter-
face A to determine whether a1 accesses the element of some array arr1 using
subscripts sub1. Section 2.2 describes this function in more detail.

If a1 or a2 indirectly access memory through dereferencing unknown address
pointers, or if they refer to different variables, we perform aliasing analysis to
determine whether a1 and a2 may reach a common memory store. Unless a1

and a2 can be proved to never alias to each other, we connect them with a
dependence edge to disable optimizations that attempt to reorder them.

2.2 Array Abstraction Interface

In object-oriented languages such as C++, programmers can define their own
array classes. As the addresses of class objects cannot be redefined, these array
classes can be treated as if they are Fortran arrays, and their aliasing relations
can be determined more easily than C pointers.

We use an array-abstraction interface to communicate the semantics of user-
defined array types with our loop optimizer. In Figure 2, we use this array-
abstraction interface to both recognize user-defined array objects and to deter-
mine the aliasing relations between array objects.

We use function is-array-elem(A,a1) to query the array-abstraction interface
A whether a1 is a subscripted array element access. If yes, we return both the
array object obj and a list of integer subscripts subs (multi-dimensional array
is allowed). Otherwise, we determine whether a1 is the subscript operator for
C pointers and whether the address of the pointer is never changed within the
optimization scope. If neither cases apply, we conclude that a1 does not access
array elements and return ∅.

We use function may-alias(A, a1,a2) to determine the aliasing relations be-
tween two memory references a1 and a2. First, if either a1 or a2 is a subscripted
array element access, we examine the corresponding arrays for aliasing relations.
Second, if both a1 and a2 are array class objects, we query the array-abstraction
interface for their aliasing relations. Third, if both a1 and a2 are local variables,
we use a simple context-insensitive algorithm (is-aliased-local-var in Figure 2)
to determine whether the input code C has performed operations that might
cause a1, a2 to reach to a common memory store. Finally, if none of the above
cases apply, as long as the types of a1 and a2 are compatible, we conservatively
assume that they might be aliased.

3 Annotating Semantics of Abstractions

Figure 3(a) shows the grammar of our annotation language. Figure 3(b) shows
some example annotations for the 1D interpolation code in Figure 1. Section 3.1, 3.2,
and 3.3 will describe the semantics of these annotations in more detail. Sec-
tion 3.4 then will discuss the inheritance of these annotations. Although we
currently require programmers to explicitly annotate all the abstractions, our

4

<annot> ::= <annot1> | <annot1>;<annot>
<annot1> ::= class <cls annot>

| operator <op annot>
<cls annot> ::= <clsname>:<cls annot1>;
<cls annot1>::=

<cls annot2> | <cls annot2> <cls annot1>
<cls annot2>::= <arr annot>

| inheritable <arr annot>
| has-value { <val def> }

<arr annot>::= is-array{ <arr def>}
| is-array{define{<stmts>}<arr def>}

<op annot> ::= <opdecl> : <op annot1> ;
<op annot1> ::=

<op annot2> | <op annot2> <op annot1>
<op annot2> ::= modify <namelist>

| new-array (<aliaslist>){<arr def>}
| modify-array (<name>) {<arr def>}
| restrict-value {<val def list>}
| read <namelist>
| alias <nameGrouplist>
| allow-alias <nameGrouplist>
| inline <expression>

<arr def> ::=
<arr attr def> | <arr attr def> <arr def>

<arr attr def> ::= <arr attr>=<expression>;
<arr attr> ::= dim | len (<param>)

| elem(<paramlist>)
| reshape(<paramlist>)

<val def> ::= <name>; | <name>;<val def>
| <name> = <expression> ;
| <name> = <expression> ; <val def>

(a) grammar

(1) class floatArray:
inheritable is-array { dim = 6;

len(i) = this.getLength(i);
elem(i$x:0:dim-1) = this(i$x);
reshape(i$x:0:dim-1) = this.resize(i$x); };

has-value {dim; len$x:0,dim-1=this.getLength(x); }
(2) operator floatArray::operator =
(const floatArray& that):
modify-array (this) {

dim = that.dim; len(i) = that.len(i);
elem(i$x:1:dim) = that.elem(i$x); };

(3) operator +(const floatArray& a1,double a2):
new-array () { dim = a1.dim; len(i) = a1.len(i);

elem(i$x:1:dim) = a1.elem(i$x)+a2; };
(4) operator floatArray::operator ()
(const Range& I):
restrict-value { this = { dim = 1; } };

result = {dim = 1; len(0) = I.len;}; };
new-array (this) { dim = 1; len(0) = I.len;

elem(i) = this.elem(i∗I.stride + I.base); };
(5) class Range: has-value {stride; base; len; };
(6) operator Range::Range(int b,int l,int s):
modify none; read { b, l, s}; alias none;
restrict-value { this={base = b;len= l;stride= s;};};
(7) operator floatArray::operator() (int index) :
inline { this.elem(index) };
restrict-value { this = { dim = 1; };};
(8) operator + (const Range& lhs, int x) :
modify none; read {lhs,x}; alias none;
restrict-value { result={stride=lhs.stride;

len = lhs.len; base = lhs.base + x; };};

(b)example

Fig. 3. Annotation language

future work will target developing compiler techniques to automate the process.
Section 3.5 discusses the automation issues in more detail.

3.1 Array Annotation

We provide three annotations, is-array, modify-array, and new-array, to describe
the array abstraction semantics of both user-defined types and operations.

The declaration(1) in Figure 3(b) uses is-array to declare that the class
floatArray satisfies the pre-defined array semantics. Specifically, it has at most
6 dimensions, with the length of each dimension i obtained by calling member
function getLength(i), and with each element of the array accessed through the
“()” operator. Here i$x : 0 : dim−1 denotes a list of parameters, i1,i2,...,idim−1.

In Figure 3(a), the is-array annotation also allows a optional “define <stmts>”
phrase to define loop-invariant operations that should be executed before enu-
merating array elements. Further, programmers can use inheritable to specify
that the annotation is preserved by class inheritance.

The declaration(2) in Figure 3(b) uses modify-array to declare that the op-
erator “floatArray::operator= (const floatArray& that)” performs element-wise
modification of the current array (the “this” argument of the C++ member
function call). Specifically, the operator first modifies the current array to have

5

the same shape as the input array that. It then modifies each element of the
current array to be a copy of the corresponding element in that.

The declaration(3) in Figure 3(b) uses new-array to declare that the operator
“+(const floatArray& a1, double a2)” constructs a new array with the same
shape as that of a1, and each element of the new array is the result of adding a2

to the corresponding element of a1. Similarly, the declaration(4) declares that the
operator “floatArray::operator()(const Range& I)” constructs a new array that
is aliased to the current one, by selecting only those elements that are within
the iteration range I.

3.2 Property Annotation

We use two annotations, has-value and restrict-value, to describe properties of
user-defined abstractions. These properties are described using symbolic values.

The annotation has-value declares that a user-defined type has certain prop-
erties that can be represented as symbolic values. For example, the declaration(1)
in Figure 3(b) uses has-value to declare that the class floatArray has two proper-
ties: the array dimension and the length of each dimension i (if the length cannot
be statically determined, this.getLenth(i) will be used in place). Similarly, the
declaration(5) declares that the Range class (which selects a subset of elements
in an array) has three properties, base, len and stride.

The annotation restrict-value describes how properties of user-defined types
can be implied from function calls. For example, the declaration(6) in Figure 3(b)
declares that if “floatArray::operator()(int index)” is used to access the element
of a floatArray object arr, the array object arr must have a single dimension, and
it will remain single-dimensional until some other operator modifies its shape.

3.3 Side-effect Annotation

We provide four annotations, mod, read, alias, and inline, to describe the gen-
eral side-effects of user-defined operators.

The mod annotation declares a list of memory references that might be mod-
ified by a function. Similarly, the read annotation declares the list of the ref-
erences being used, and the alias annotation declares the groups of references
that might be aliased to each other. These annotations communicate with our
alias and side-effect analysis algorithms in resolving semantics of function calls.
The declaration(8) in Figure 3(b) shows an example of using these annotations.

The inline annotation declares the high-level semantic interpretations of
user-defined functions. As example, the declaration(7) in Figure 3(b) declares
that “floatArray::operator()(int)” is semantically equivalent to a subscripted el-
ement access of the current floatArray object.

3.4 Inheritance of Semantic Annotations

We have provided two class annotations, is-array and has-value, to describe the
properties of user-defined types. Since the has-value annotation does not make

6

apply-optimization(C, A)
C: input code fragment; A: annotation interface

(1) translate element-wise array operations
(1.1) rewrite-inline-operators(C, A)
(1.2) valmap = ∅; property-propagate(C, A, valmap);
(1.3) rewrite-modify-array(C, A, valmap); rewrite-new-array(C, A, valmap);

(2) loop-transformation(C, A);
(3) rewrite-array-access(C, A);

Fig. 4. Steps of optimizing array abstractions

implicit assumptions about the declared properties, the annotation is preserved
by class inheritance. However, the is-array annotation assumes that elements of
an array object cannot be aliased, an assumption which can be violated by the
derived classes. Consequently, we decide that the derived classes do not automat-
ically inherit the is-array annotations unless programmers explicitly specify oth-
erwise (using the inheritable annotation). For pointer variables of non-inheritable
array types, we first try to precisely determine their types, and if not successful,
conservatively assume that their semantics are unknown.

Similar situations arise for virtual functions, whose side-effect annotations
(modify-array, new-array, restrict-value, mod, read, alias, and inline) should
not be inherited. Consequently, we assume that the semantics of virtual function
calls are unknown unless their implementations can be statically determined.

3.5 Automatic Extraction and Verification of Annotations

Our annotation language serves as an interface between program analyses and
transformations. Though currently annotations can only be manually produced
by programmers, our future work will try to automate the process. Automatically
extracting semantic annotations is in general a hard problem, which cannot yet
be solved satisfactorily through existing techniques. Specifically, the implementa-
tion details of user-abstractions (e.g., book-keeping, performance optimizations,
parallelization considerations) can easily obscure the real semantics and force
compilers to conservatively assume non-existing dependences.

To illustrate the complexity, consider a smart-object class that performs
reference-counting and copy-on-write. The objects of this class are conceptu-
ally independent of each other, but any global aliasing analysis algorithm would
see the internal sharing of data and would conclude that all such objects can
potentially be aliased. To figure out that each modification applies uniquely to a
single object, the algorithm must know that data sharing happens only when the
reference count of a smart-object has value > 1, a piece of context information
mostly ignored by existing algorithms. If the programmer chooses to annotate
the smart-object assignment as having no aliasing side-effect, it would be re-
jected by a verifier. However, if an optimizer chooses to trust the programmer,
it will always produce correct code because the annotation conveys precisely the
external semantics of smart-objects. Other implementation details can produce
similar effects. We are investigating techniques to overcome these issues.

7

property-propagate(C, A, vmap)
C: input code fragment; A: annotation interface;
vmap: map from objects to their property values

wklist = ∅; defUse = build-dataflow-graph(C);
find-restr-op(C,A,vmap,wklist);
while (wklist 6= ∅)

cur = pop(wklist); curval = vmap(cur);
if (cur is a def-node in defUse)

for (each cur’s unique use-node n)
if (vmap(n).merge-with(curval) changes)

find-restr-op(stmt(n),A,vmap,wklist);
else if (cur has a unique def-node n and

vmap(n).merge(curval) changes)
find-restr-op(stmt(n),A,vmap,wklist);
add n to wklist

find-restr-op(C, A, vmap, wklist)
C: input code fragment;
A: annotation interface;
vmap: map from objects to their property values
wklist: working list of object references;

for (each expression exp ∈ C)
if (desc =A.is-value-restr-op(exp, vmap))

for (each (ref, value) ∈ desc))
if (vmap(ref).merge(value) changes)

add ref to wklist;

Fig. 5. Property propagation algorithm

4 Optimizing array abstractions

Figure 4 summarizes the overall steps of our optimizer. Given both the input
code and the annotations, we first translate all the collective array operations
into an intermediate form of explicit loop computations. Then, we apply the
loop optimization algorithm in Figure 2 to the intermediate form. Finally, we
translate the output code into efficient low-level implementations.

As shown in Figure 4, we further separate the first step into three sub-steps.
First, we replace all the function calls with inline annotations with their semantic
definitions. Then, we apply an adapted constant propagation algorithm to derive
the properties of all objects annotated with has-value declarations. Specifically,
we try to precisely determine the shapes of all array objects. Finally, we translate
all the operations annotated with modify-array and new-array declarations into
explicit loop computations.

It is important that we apply loop optimizations to an intermediate form in-
stead of to the final low-level implementations. An example of the intermediate
form is shown in Figure 7, where all the array accesses are explicitly represented
as member function calls, and all object properties are readily available. In con-
trast, after the final step (3) in Figure 4, multi-dimensional arrays are translated
into single-dimensional, and C pointers are used in place of the array objects.
These implementation details would obscure the original high-level semantics
and disable profitable loop optimizations.

4.1 Property Propagation Algorithm

Figure 5 presents our property propagation algorithm. Given an input fragment
and the annotations, this algorithm first builds the data-flow graph (def-use
chain) and then propagates the properties of user-defined objects on the data-
flow graph. The collected properties are stored in vmap, which maps object
references to their corresponding property values.

8

rewrite-modify-array(C, A, vmap)
C: input code fragment; A:array annotation;
vmap: map from objects to their property values

for (each statement s ∈ C s.t. A.is-mod-arr(s))
arr = A.get-mod-arr-obj(s)
(dim,lens) = get-array-shape(vmap,arr)
ivars = create-new-intvars(dim);
if (reshape-arr(A,vmap,arr))

ns = create-member-fcall(“reshape”,arr,lens);
insert ns before s;

rhs = A.get-mod-arr-elem(s,ivars);
lhs = create-member-fcall(“elem”, arr, ivars);
ns = create-assignment(lhs, rhs);
for (i = 0; i < ivars.size(); + + 1))

ns = create-loop(ivars[i], 0, lens[i], ns);
for (each memory reference a ∈ rhs)

if (loop-dependent(lhs, a))
(tmp, ns1) = copy-array-to-tmp(a);
insert ns1 before s; replace a with tmp

replace s with ns;

rewrite-new-array(C, A, vmap)
C: input code fragment; A:array annotation;
vmap: map from objects to their property values

for (each expression exp ∈ C)
if ((arr,subs) = A.is-access-arr-elem(exp))

if (A.is-new-arr(arr))
replace exp with A.get-new-arr-elem(arr,subs);

else if (! is-variable(arr))
(tmp, ns) = copy-array-to-tmp(arr);
insert ns before exp; replace arr with tmp

else if ((arr,i) = A.is-access-arr-len(exp))
if (A.is-new-arr(arr))

(dim,lens)=get-array-shape(vmap,arr)
repl = evaluate(lens, i);
replace exp with repl;

else if (! is-variable(arr))
(tmp, ns) = copy-array-to-tmp(array);
insert ns before exp; replace arr with tmp;

Fig. 6. Array operation translation algorithm

Our algorithm relies on a lattice that is nearly identical to that of the tra-
ditional constant-propagation algorithm. The depth of the property lattice is
three: top → value → bottom, so each property can change its value twice.

Our algorithm is different from constant propagation in three aspects. First,
we propagate symbolic values instead of constants. Second, we imply properties
from both the modification and usage of an object, so the propagation is bi-
directional. Third, because restrict-value annotations are independent of control-
flow, the result is always correct even before completion.

In Figure 5, we use a working list (wklist) to keep track of the object refer-
ences whose properties need to be propagated. First, we invoke find-restr-op to
collect the initial known properties for all objects. Each object is added to the
working list if its property collection changes. Since each object has a limited
number of different properties, and each property can change its value twice,
eventually the working list becomes empty and the iteration terminates.

Each object reference cur in wklist is processed as follows. If cur is a defi-
nition node in the data-flow graph, we examine each use-node n connected with
cur. If n does not have any other definition point, we update n to have the same
properties as cur. Alternatively, if cur is a use-node of the data-flow graph and
if cur has a single definition point n, we update n to have the same properties
as cur, and then add n to wklist to propagate the properties to other use-nodes
connected to n. Whenever the property collection of n changes, we invoke find-
restr-op to accumulate new properties that depend on the updated properties of
n. The process iterates until no more updates are necessary.

4.2 Translating Array Operations

In Figure 6, we use functions rewrite-modify-array and rewrite-new-array to
translate collective array operations into explicit loop computations.

9

void interpolate1D (floatArray& fineGrid, floatArray& coarseGrid) {
int fineGridSize = fineGrid.getLength(0), coarseGridSize = coarseGrid.getLength(0);
Range If (2,fineGridSize-2,2), Ic (1,coarseGridSize-1,1);
for (int i = 0; i < (fineGridSize - 3) / 2; i += 1)

(fineGrid.elem)(i * 2 + 2) = coarseGrid.elem(i + 1));
for (int j = 0; j < (fineGridSize - 3) / 2; j += 1)

(fineGrid.elem)(j * 2 + 1) = (coarseGrid.elem(j) + coarseGrid.elem(j + 1)) / 2.0;
}

Fig. 7. Example of translating array operations

rewrite-array-access(C, A)
C: input code fragment; A:array annotation;

for (each array declaration decl in C)
insert A.get-pre-def(decl) after decl;

for (each statement s in C s.t. A.is-reshape-arr(s))
insert A.get-pre-def(s) after s; replace s with A.get-reshape-def(s);

for (each expression exp in C s.t. A.is-access-arr-elem(exp) or A.is-access-arr-len(exp))
replace exp with A.get-arr-elem-def(exp) or A.get-arr-len-def(exp);

Fig. 8. Code generation for array abstractions

The function rewrite-modify-array rewrites each operation s that has modify-
array semantics. First, by querying the annotation interface A, we determine
both the array object arr being modified and the new value of each array ele-
ment. We then determine the new shape of arr (by querying vmap) and insert a
new statement to reshape arr if necessary. Next, we create a loop nest that as-
signs each element of arr with the correct new value, and if these new values are
dependent on the old values of arr, we insert a new statement before s to save the
old values into a new temporary array. Note that although copy-array-to-tmp(a)
is inside a loop, array arr is copied at most once, and loop dependence analysis
is used to determine the necessity of copying. Finally, we replace statement s
with the new loop computation.

After applying rewrite-modify-array, we now further apply rewrite-new-array
to rewrite each expression that creates a new array arr, accesses an individual
element or reads the shape of arr, and then discards arr. If arr is created
by an operator annotated with the new-array declaration, we avoid creating
arr by evaluating the information access directly based on the element and
shape definitions of the new-array annotation. Otherwise, if the semantics of the
operator that creates arr is unknown, we create a new variable tmp to remember
the created temporary array and then replace all the other creations of arr with
tmp. By saving the temporary array into a new variable, we create arr only
once, instead of creating the same array multiple times in the original code.

Figure 7 shows the result of rewriting the 1D interpolation code in Figure 1.
Here the array assignment operators, having modify-array semantics, are trans-
lated into explicit loops. Further, the array plus and division operators, having
new-array semantics, are translated into operations on individual elements.

10

void Five Point Stencil (Index & i , Index & j) {
Solution (i,j) = (Mesh Size * Mesh Size * Right Hand Side (i,j) + Solution (i+1,j)

+ Solution (i-1,j) + Solution (i,j+1) + Solution (i,j-1)) / 4.0;
}
void Red Black Relax (int gridSize) {

Index Black Odd(1,(gridSize - 1) / 2,2), Black Even(2,(gridSize - 2) / 2,2);
Index Red Odd(1,(gridSize - 1) / 2,2), Red Even(2,(gridSize - 2) / 2,2);
Index Odd Rows(1,(gridSize - 1) / 2,2), Even Rows(2,(gridSize - 2) / 2,2);
Five Point Stencil (Black Odd , Odd Rows); Five Point Stencil (Black Even , Even Rows);
Five Point Stencil (Red Even , Odd Rows); Five Point Stencil (Red Odd , Even Rows);

}

Fig. 9. Two-dimensional red-black relaxation

4.3 Generating Low-level Implementations

Figure 8 describes the final step of our algorithm, where we replace array ab-
straction operations with low-level implementation details. First, as each array
abstraction is associated with a list of loop-invariant statements, we insert these
statements immediately after the declaration of each array variable and imme-
diately after each operation that reshapes the array variable. Second, we replace
all operations that read or modify array objects with low-level implementations.

5 Experimental Results

This section presents our results from optimizing kernels written using the
A++/P++ Library [14, 12], an array class library that supports both serial and
parallel array abstractions with a single interface. We selected our kernels from
the Multigrid algorithm for solving elliptic partial differential equations. The
Multigrid algorithm consists of three phases: relaxation, restriction, and inter-
polation, from which we selected both interpolation and relaxation(specifically
red-black relaxation) on one, two, and three dimensional problems.

Our experiments aim to validate two conclusions: our approach can signifi-
cantly improve the performance of numerical applications, and our approach is
general enough for optimizing a large class of applications using object-oriented
abstractions. The kernels we used, though small, use a real-world array abstrac-
tion library and are representative of a much broader class of numerical compu-
tations expressed using sequences of array operations. All six kernels (one, two
and three-dimensional interpolation and relaxation) benefited significantly from
our optimizations.

Figures 1 and 9 present the original versions of the single-dimensional inter-
polation and the two-dimensional red-black relaxation3 respectively, both using
array abstractions. The optimized versions are similar to the 1D interpolation
code in Figure 7, except that all the loops are fused and that the final code uses
low-level C implementations.

We measured the performance of three versions for each kernel: the original
version (orig) using array abstractions, the translate-only version auto-optimized

3 In our experiment, the Five Point Stencil function is inlined within Red Black Relax.

11

Interp1D Interp2D Interp3D
array orig transla translate fusion orig transla translate fusion orig transla translate fusion
size (sec) te only + fusion only (sec) te only + fusion only (sec) te only + fusion only
50 4.833 1.915 2.131 1.113 7.000 3.034 3.932 1.296 9.166 2.497 3.184 1.275
75 5.000 4.142 4.519 1.091 7.000 2.766 3.131 1.132 9.333 3.021 3.813 1.262
100 5.333 2.593 2.899 1.118 7.000 2.753 3.247 1.179 9.333 2.929 3.767 1.286
125 7.666 2.853 4.228 1.482 9.833 3.304 3.882 1.175 10.666 3.214 4.442 1.382
150 9.166 2.390 4.214 1.763 11.166 2.897 4.542 1.568 12.333 2.871 4.189 1.459
175 11.366 2.630 4.618 1.756 12.833 2.893 4.964 1.716 15.766 3.403 5.264 1.547
200 11.000 2.419 4.289 1.773 14.799 3.161 5.348 1.692 13.799 2.514 4.211 1.675

Table 1. Interpolation results (different numbers of iterations were run for different
problem sizes)

RedBlack1D RedBlack2D RedBlack3D
array orig transla translate fusion orig transla translate fusion orig transla translate fusion
size (sec) te only + fusion only (sec) te only + fusion only (sec) te only + fusion only
50 11.500 2.178 5.338 2.451 17.166 1.650 3.344 2.026 22.499 3.260 3.445 1.057
75 14.999 1.728 6.692 3.872 16.666 1.627 3.280 2.016 27.332 3.938 3.776 0.959
100 26.166 3.540 11.852 3.348 32.165 2.672 5.146 1.926 35.665 4.744 4.176 0.880
125 32.499 1.960 12.327 6.289 41.498 2.418 4.421 1.828 45.998 4.685 3.895 0.831
150 35.165 2.865 13.885 4.847 46.665 2.134 4.643 2.176 53.498 5.272 4.440 0.842
175 38.132 2.344 15.270 6.513 52.065 2.514 5.378 2.140 64.531 6.238 5.701 0.914
200 38.598 3.125 15.117 4.838 53.398 2.501 6.117 2.446 67.797 6.703 5.384 0.803

Table 2. Red-Black Relaxation Results (different numbers of iterations were run for
different problem sizes)

by translating array operations into low level C implementations, and the trans-
late+fusion version auto-optimized both with array translation and loop fusion.
We measured all versions on a Compaq AlphaServer DS20E. Each node has 4GB
memory and two 667MHz processors. Each processor has L1 instruction and data
caches of 64KB each, and 8MB L2 cache. We used the Compaq vendor C++
compiler with the highest level of optimization, and measured the elapsed-time
of each execution.

Tables 1 and 2 present our measurements using multiple array sizes. Here
column orig lists the elapsed time spent executing the original versions written
using array abstractions; column translate-only lists the speedups from translat-
ing array abstractions into low-level C implementations (obtained by dividing
execution time of the orig with that of translate-only); column translate+fusion
lists the speedups from both array translation and loop fusion; column fusion-
only lists the results from dividing translate+fusion columns with translate-only
columns, i.e., the speedups from applying loop fusion alone.

From Table 1, in nearly all cases the translation of the array abstractions
results in significant improvements. Applying loop fusion improves the perfor-
mance further by 20%-75%. This validates our belief that loop optimization
is a significant step toward fully recovering the performance penalty for using
high-level array abstractions.

From Table 2, the dominate performance improvements come from trans-
lating array abstractions into low-level implementations(translate-only). Loop
fusion can further improve performance by the factor of 2.3-6.5 for one and two-

12

dimensional relaxation kernels, but for three-dimensional relaxation, it showed
only slight improvement (5%) for small arrays(50) and degraded performance (up
to 20%) for large arrays. Here the performance degradation is due to increased
register pressures from the much larger fused loop bodies. We are working on
better algorithms to selectively apply loop fusion and avoid overly aggressively
loop fusion.

The final codes generated by our optimizer are similar to the corresponding
C programs that programmers would manually write. Consequently, we believe
that their performance would also be similar. Further, because programmers
usually don’t go out-of-the-way in applying loop optimizations, our techniques
can sometimes perform better than hand-written code. This is especially true for
the red-black relaxation kernels, where the original loops need to be re-aligned
before fusion and a later loop-splitting step is necessary to remove condition-
als inside the fused loop nests. Such complex transformations are much more
easily and more reliably applied automatically by compilers than manually by
programmers.

6 Related Work

Prior research has developed a rich set of loop transformation techniques [18, 11,
13, 8, 6] for optimizing scientific applications. However, most of these techniques
target only explicit loop computations operating on primitive array types, such
as the arrays in Fortran or restrict pointers in C. In contrast, we target extend-
ing these techniques to optimize high-level user-defined types, whose semantics
are obscured from the compiler. Our approach could be sufficient for optimiz-
ing general object-oriented array abstractions such as the C++ valarray and
containers in STL, though we do not yet have results for these abstractions.

Previous work has also attempted to apply high-level optimizations to user-
defined abstractions. Specifically, Wu, Midkiff, Moreira and Gupta [20] proposed
semantic inlining, which allows their compiler to treat user-defined abstractions
as primitive types in Java. Artigas, Gupta, Midkiff and Moreira [2] devised an
alias versioning transformation that creates alias-free regions in Java programs
so that loop optimizations can be applied to Java primitive arrays and the ar-
ray abstractions from their library. Quinlan and Schordan [15] developed a C++
compiler infrastructure and used it to translate abstractions from the A++/P++
array library into lower level loops. Wu and Padua [21] investigated automatic
parallelization of loops operating on user-defined containers, but assumed that
their compiler knew about the semantics of all operators. All the above ap-
proaches apply compiler techniques to optimize library abstractions. However,
by encoding the knowledge within their compilers, these specialized compilers
cannot be used to optimize abstractions in general other than those in their li-
braries. In contrast, we target optimizing general user-defined array abstractions
by allowing programmers to explicitly communicate with the compiler.

Several other compiler projects have placed significant emphasis on optimiz-
ing libraries, especially in the general context of Telescoping Languages [5]. The

13

SUIF compiler [16], MPC++ (OpenC++) and MPC++ [10, 7] each provided a
programmable level of control over the compilation of applications in support of
library optimizations. Other approaches, such as the Broadway compiler [9], uses
more general annotation languages to guide source code optimizations. However,
these frameworks have not focused on applying loop optimizations to object-
oriented abstractions.

Template Meta-Programming[17, 4] can also optimize user-defined abstrac-
tions, but is effective only when optimizations are isolated within a single state-
ment. Loop fusion across statements, which requires dependence analysis, is
beyond the capabilities of template meta-programming.

7 Conclusions

Through the classification of array semantics, this paper develops techniques
for applying aggressive loop optimizations to general user-defined abstractions.
This work shows promise in significantly raising the level of abstraction while
eliminating the associated performance penalty. Although we have only demon-
strated our approach on C++ array abstractions, which are similar to F90 array
constructs, the approach extends to more general object-oriented abstractions.

References

1. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan
Kaufmann, San Francisco, October 2001.

2. P. V. Artigas, M. Gupta, S. Midkiff, and J. Moreira. Automatic loop transfor-
mations and parallelization for Java. In Proceedings of the 2000 International
Conference on Supercomputing, May 2000.

3. U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publish-
ers, Boston, 1988.

4. F. Bassetti, K. Davis, and D. Quinlan. A comparison of performance-enhancing
strategies for parallel numerical object-oriented frameworks. In I. et al., editor,
International Scientific Computing in Object-Oriented Parallel Environments, IS-
COPE 97, volume 1343 of LNCS. Springer, 1997.

5. B. Broom, K. Cooper, J. Dongarra, R. Fowler, D. Gannon, L. Johnsson,
K. Kennedy, J. Mellor-Crummey, and L. Torczon. Telescoping languages: A strat-
egy for automatic generation of scientific problem-solving systems from annotated
libraries. Journal of Parallel and Distributed Computing, 2000.

6. S. Carr and K. Kennedy. Improving the ratio of memory operations to floating-
point operations in loops. ACM Transactions on Programming Languages and
Systems, 16(6):1768–1810, 1994.

7. S. Chiba. Macro processing in object-oriented languages. In TOOLS Pacific ’98,
Technology of Object-Oriented Languages and Systems, 1998.

8. S. Coleman and K. S. McKinley. Tile size selection using cache organization. In
Proceedings of the SIGPLAN Conference on Programming Language Design and
Implementation, La Jolla, CA, June 1995.

9. S. Z. Guyer and C. Lin. An annotation language for optimizing software libraries.
ACM SIGPLAN Notices, 35(1):39–52, Jan. 2000.

14

10. e. a. Ishikawa, Y. Design and implementation of metalevel architecture in c++ -
mpc++ approach -. April 1996. San Francisco, USA.

11. M. Lam, E. Rothberg, and M. E. Wolf. The cache performance and optimiza-
tions of blocked algorithms. In Proceedings of the Fourth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-IV), Santa Clara, Apr. 1991.

12. M. Lemke and D. Quinlan. P++, a C++ virtual shared grids based programming
environment for architecture-independent development of structured grid applica-
tions. In LNCS. Springer Verlag, 1992. Proceedings of CONPAR/VAPP V.

13. K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with loop
transformations. ACM Transactions on Programming Languages and Systems,
18(4):424–453, July 1996.

14. D. Quinlan and R. Parsons. A++/p++ array classes for architecture indepen-
dent finite difference computations. In Proceedings of the Second Annual Object-
Oriented Numerics Conference, April 1994.

15. D. Quinlan, M. Schordan, B. Philip, and M. Kowarschik. The specification
of source-to-source transformations for the compile-time optimization of paral-
lel object-oriented scientific applications. In H. G. Dietz, editor, Languages and
Compilers for Parallel Computing, 14th International Workshop, LCPC 2001, Re-
vised Papers, volume 2624 of Lecture Notes in Computer Science, pages 570–578.
Springer Verlag, 2003.

16. M. S. L. S. P. Amarasinghe, J. M. Anderson and C. W. Tseng. The suif compiler
for scalable parallel machines. In in Proceedings of the Seventh SIAM Conference
on Parallel Processing for Scientific Computing, Feb 1995.

17. T. Veldhuizen. Expression templates. In S. Lippmann, editor, C++ Gems.
Prentice-Hall, 1996.

18. M. E. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings of
the SIGPLAN Conference on Programming Language Design and Implementation,
Toronto, June 1991.

19. M. J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press,
Cambridge, 1989.

20. P. Wu, S. P. Midkiff, J. E. Moreira, and M. Gupta. Improving Java performance
through semantic inlining. In Proceedings of the Ninth SIAM Conference on Par-
allel Processing for Scientific Computing, Mar 1999.

21. P. Wu and D. Padua. Containers on the parallelization of general-purpose Java
programs. In Proceedings of International Conference on Parallel Architectures
and Compilation Techniques, Oct 1999.

22. Q. Yi, K. Kennedy, and V. Adve. Transforming complex loop nests for locality.
The Journal Of Supercomputing, 27:219–264, 2004.

15

labass1
This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

labass1

